# **Turboviber**®

Operating Instructions

Global<sup>®</sup> Pneumatic TCL Turbine Vibrators

# **Models**

TCL-2500

TCL-4000

TCL-6000





TCL Vibrators are designed for use with Universal Cradle Lug Brackets.







www.GlobalManufacturing.com

## **Global Manufacturing Inc.**®

1801 East 22nd St Little Rock, Arkansas 72206

501.374.7416 TEL

800.551.3569 TOLL FREE USA & CANADA

501.376.7147 FAX







#### **Table of Contents Page** Introduction I. 2 II. Installation Procedures 3 III. Mounting Locations 4 - 6 IV. Operation - Air Requirements 7 V. Maintenance 8 - 12 VI. **Brackets** 12 VII. Performance Data 13 VIII. **Dimensions** 13 IX. Parts List and Parts Explosion 14 Х. Troubleshooting 15

#### I. Introduction

You have purchased a TCL-2500, TCL-4000, or TCL-6000 Turboviber<sup>®</sup> high-speed turbine vibrator that uses patented Silver Sonic Turbine<sup>®</sup> technology available only on products manufactured by Global Manufacturing, Inc.<sup>®</sup>. This technology makes these vibrators the most efficient and lightweight pneumatic rotary vibrators available today. They are excellent replacements for roller style high frequency pneumatic vibrators frequently used on forms for pre-cast concrete products. While the TCL model Turboviber<sup>®</sup> vibrators fit the standard cradle lug brackets commonly used on concrete forms, they are up to 30% lighter, produce up to 35% more vibrations per minute, and consume 20-30% less air than comparable roller vibrators. They can operate on as little as 10 psi and can easily handle dirty, non-lubricated air that will stop a roller vibrator in a matter of days.

For optimum performance, cycle the vibrator on and off. The vibrator acts as a friction reducer and once the bulk solid is set into motion, gravity should do the rest. Do not operate the vibrator on an empty hopper as this may cause structural damage to the hopper.

Vibrators should be operated only when discharge gates are open. Operating the vibrator with the discharge gate closed will cause the material inside the structure to compact.

Vibration has two important elements – Frequency and Amplitude. Frequency is the speed (RPM) or the number of vibrations per minute. It is controlled by the air flow to a pneumatic vibrator. Amplitude is the unbalance or amount of force produced by the eccentric weight. The faster the eccentric weights turn the more force output generated. Force and frequency work together. It is not necessary to use a lot of force when you have the proper frequency.



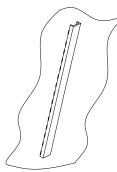
# **SAFETY PRECAUTIONS**

- Follow all mounting instructions.
- Always use a safety cable or chain for support.
- Do not operate vibrators when structure is empty.
- Do not operate vibrators when gate is closed or conveyor is stopped unless consolidation of material is desired.
- Wear ear protection for 90+ decibel levels.
- Do not operate vibrators without side covers.
- Do not operate the pneumatic vibrators above 100 psi.
- To prevent explosive hazard, do not use combustible gases to drive the pneumatic vibrator.
- Always operate pneumatic vibrator with a Filter Regulator.
- Always disconnect air line before maintenance.



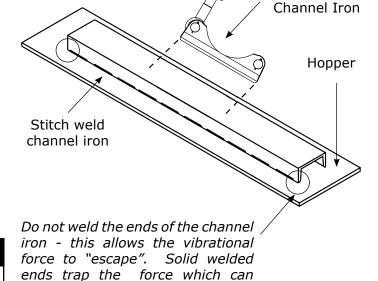





GCL Bracket Stitch Weld to

#### II. Installation Procedures

#### **▲** Caution!


Do not mount the vibrator directly to the structure wall. Use a channel iron stiffener for proper mount rigidity and as the transducer of the vibrational energy.

The key to successful vibration is a proper mount because rotary vibration resonates the material inside the structure, when the vibrator is mounted correctly. The vibrator should appear motionless. There should not be a large amount of motion or noise.



Stitch Weld the Channel Iron

# Attach the vibrator to the channel iron. Stitch weld a GCL Bracket to the back of the channel iron. Do not weld the ends. Mount the vibrator in the bracket by sliding the foot into the GCL Bracket, lowering the latch bolt into the fingers on the vibrator housing, and securely tighten the nut.



#### Channel Irons - Size & Mounting

#### **Important!**

The channel iron should be at least twothirds of the height of the sloped portion of the hopper but no greater than 10 feet (3 m).

The channel iron should be at least two-thirds the height of the sloped portion of the hopper, but not less than 6 feet (1.83 m) in length. The channel iron width should not be less than the base width of the vibrator. See chart below for recommended channel sizes. DO NOT install more than one vibrator on the same channel iron or use a channel iron shorter than the recommended length. A short channel may flex the bin wall.

| <b>Channel Iron Designation</b> |                  |                  |                    |                   |  |  |
|---------------------------------|------------------|------------------|--------------------|-------------------|--|--|
|                                 | Channel<br>Width | Web<br>Thickness | Weight<br>per foot | Minimum<br>Length |  |  |
| Model                           | in in lb/fi      |                  | lb/ft              | ft                |  |  |
|                                 | mm               | mm               | kg/m               | m                 |  |  |
| TCL-2500                        | 6"               | .437             | 13                 | 6                 |  |  |
|                                 | 152              | 11               | 19                 | 1.5               |  |  |
| TCL-4000                        | 6"               | .437             | 13                 | 6                 |  |  |
| 1 1 CL-4000                     | 152              | 11               | 19                 | 1.5               |  |  |
| TCL-6000                        | 6" .43           |                  | 18.75              | 6                 |  |  |
|                                 | 152              | 11               | 28                 | 1.5               |  |  |

Stitch weld the channel iron vertically to the sloped portion of the bin wall. Weld 3 inches (7.5 cm), skip 1 inch (2.5 cm), weld 3 inches (7.5 cm), etc... Leave 1 inch (2.5 cm) un-welded on the ends and corners. This allows the vibration to dissipate out the ends of channel without causing stress cracks to the hopper or bin. By doing so, should the weld fail, the entire mount will not fall off. Do not mount the channel iron horizontally.

cause stress cracks.

If your vibrator is mounted for a permanent application, attach a safety cable to a stronghold, independent of the channel mount, which is higher than the mounted vibrator and capable of holding the weight of the vibrator.







#### III. Mounting Locations

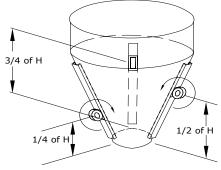
#### **Single Vibrator**

Install a channel iron stiffener on the outside of the sloping wall 1/3 the distance above the discharge opening.


2/3 of H

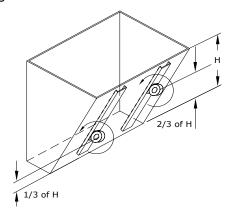
#### **Multiple Vibrators**

Use more than one vibrator when the diameter or width of any wall is greater than 12 feet (3.66 m). Always mount the vibrators on different planes.


#### Two Vibrators on Round or Square Hoppers

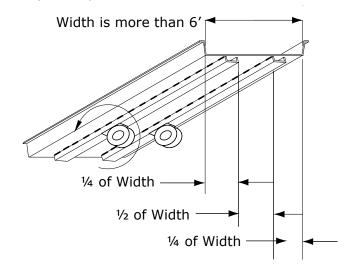
Install channel iron stiffeners 180° apart. Install one vibrator on the outside of the sloping wall 1/3 the distance above the discharge opening. Install the second vibrator on the outside of the opposite sloping wall 2/3 the distance above the discharge opening.




#### **Three Vibrators**

Install channel iron stiffeners mounted 120° apart. Install the first vibrator on the outside of the sloping wall 1/4 the distance above the discharge opening. Install the second vibrator on a separate channel iron at 1/2 the distance above the discharge opening. Install the third vibrator on the remaining channel iron at 3/4 the distance above the discharge opening.




#### **Two Vibrators on Rectangular Hoppers**

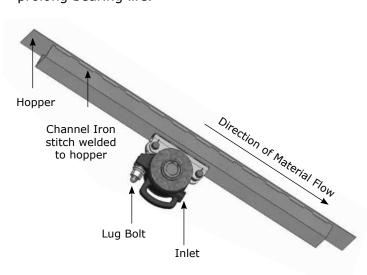
Install channel iron stiffeners on opposite sides of the long walls. Install one vibrator on the outside of the sloping wall 1/3 the distance from the discharge opening. Install the second vibrator on the outside of the opposite sloping wall 2/3 the distance above the discharge opening. When only one wall slopes, mount both stiffeners on it. Equally space the stiffeners on the wall. Place one vibrator 1/3 above the discharge opening on one channel iron and the other vibrator 2/3 above the bin's discharge opening on the second channel.



#### **Installation on Chutes and Flow Pipes**

Mount channel iron stiffeners vertically or in the direction of material flow. Center the channel if the chute is less than 6 feet (1.83 m) in width. If the chute is greater than 6 feet in width, use two vibrators on separate channel irons. To maximize each vibrator's radius of influence; center each channel iron in each half of the chute. Each channel iron should be located  $\frac{1}{4}$  of the chute width from the edge and  $\frac{1}{2}$  of the chute width apart. (e.g. – a chute 8' wide, the channel iron locations would be 2' from each edge and 4' apart.) When wall thickness is less than  $\frac{1}{8}$ ", additional reinforcement may be required.





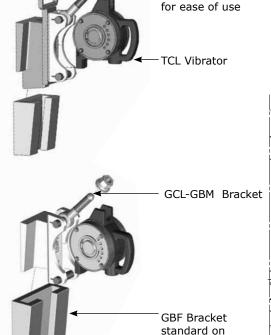





#### **Placement on Channel Iron**

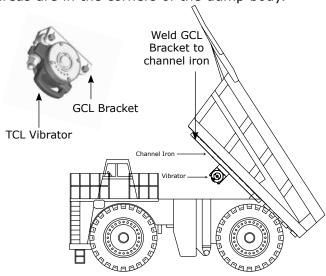
The axis of rotation of the turbine wheel for all rotary vibrators should be oriented in the direction of material flow. Position lug bolt on the high side (uphill side) of the channel iron. The shaft of the vibrator should ideally be in a horizontal position to prolong bearing life.




#### **Installation on Railcars**

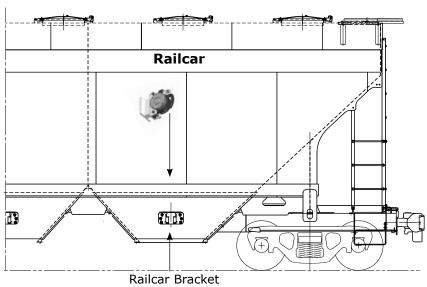
Place TCL vibrator in "GCL-GBMX Bracket" or "GCL-GBM Bracket". The vibrator on the bracket slides into the standard railcar bracket on the hopper car.

GCL-GBMX Bracket


has handy handle

most railcars




#### **Mounting on Truck Bed**

Weld GCL bracket to an independent channel iron. TCL vibrator inserts quickly into bracket. Locate the channel iron as close as possible to the material flow problem area. The most common problem areas are in the corners of the dump body.



#### **Securing Vibrator to GCL Bracket**

Attach the vibrator to the cradle lug bracket by placing the tab at the base of the vibrator under the free bar on the bracket. Rotate the vibrator towards the bracket until it is fully seated. Rotate the bracket bolt until it fits between the two fingers on the vibrator housing and secure it using the special cradle lug nut. It is recommended that the nut be tightened by hand using a standard openend or box wrench. Repeated tightening with an air wrench as the vibrator is moved from bracket to bracket will eventually cause excessive wear to the fingers on the vibrator housing. Periodically check for loosening of the mount.

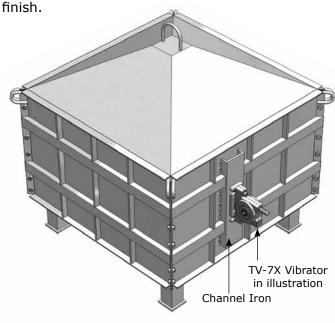




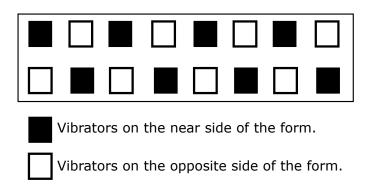




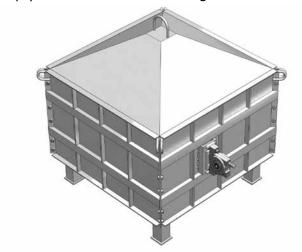
#### **Concrete Consolidation Applications**


Spacing of the vibrators is based on the consistency of the concrete. Refer to the following table:

| Vibrator Spacing for Concrete<br>Consolidation |                |                                  |  |  |
|------------------------------------------------|----------------|----------------------------------|--|--|
| Consistency                                    | Slump          | Distance<br>Between<br>Vibrators |  |  |
| Very Stiff or                                  | < 1.0"         | 5' apart                         |  |  |
| Stiff Concrete                                 | < 25 mm        | 1.5 m                            |  |  |
| Stiff Plastic                                  | 1.0 - 2.0"     | 6' apart                         |  |  |
| Concrete                                       | 25 mm - 50 mm  | 1.8 m                            |  |  |
| Plastic                                        | 2.0 - 5.0"     | 7' apart                         |  |  |
| Concrete                                       | 50 mm - 127 mm | 2.1 m                            |  |  |
| Flowing                                        | > 5.0"         | 8' apart                         |  |  |
| Concrete                                       | > 127 mm       | 2.4 m                            |  |  |


#### **Orientation of the TCL Vibrator**

The vibrator should be mounted with the shaft horizontal, the lug bolt on top, and the turbine wheel rotating to encourage the air bubbles to migrate towards the surface of the concrete.


Proper selection, placement, mounting, and orientation can mean the difference between strong, well-finished concrete, and poor quality concrete. Use a 5' (1.5 m) channel iron to distribute vibration over a larger area for optimal concrete



For large applications, alternate vibrators on opposite form walls. For instance, the first vibrator is placed on the front wall and the next is 5' (1.5 m) away but on the back wall. See illustration below:



Do not cut structural members to fit channel iron on form. Cut channel to fit over the horizontal stiffeners. Do not weld channel to horizontal stiffeners - stitch weld only to the form wall. If there is absolutely no way to fit a long channel iron on form or over any structural members, use a short channel. A channel iron is important to help keep your form from oil canning.









#### IV. Operation - Air Requirements

#### Air Requirements

Lubricated air is NOT required for TCL vibrators. Operate these vibrators on filtered (150 micron), regulated air between 20 and 80 psi (1.36-5.44 bar). Lubrication might collect dirt that will impair proper vibrator operation.

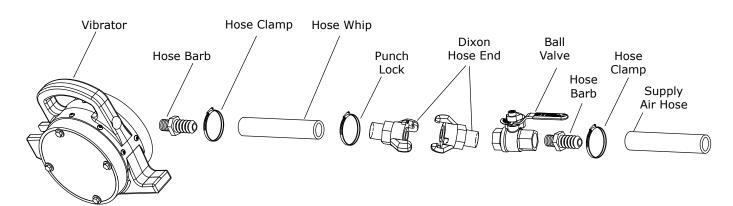
#### **Hose Connections**

The air inlet shaft is threaded to accept a 3/8" hose barb. The hose should be securely clamped to the barb fitting with a Band-It®, or Punch-Lok®, or similar type clamp. A worm driven type clamp is not recommended since the vibration may cause the clamp to loosen and allow the hose to blow off the barb fitting.

#### **Quick Disconnect Coupling**

If the vibrator will be moved or disconnected frequently, a hose whip could be added to the airline before the vibrator. The hose whip is a piece of hose 12 - 18" (305 - 457 mm) in length, attached to the air inlet shaft with a clamp as described above. A quick coupling, such as a Dixon® hose end coupling, should be attached to the free end of the hose whip. A ball valve should be added to the supply airline to control the air and to permit the quick disconnection of the Dixon® type coupling.

#### **Controlling Vibrator Speed**


An air regulator can be used to control the vibrator speed. Operating the vibrator at pressures higher than necessary will reduce bearing life (a 10% increase in speed reduces the bearing life by 50%).

#### **Material Flow Applications**

Adjust the airflow until material flow occurs. More air is not always better. Cycle the vibrator on and off. The vibrator can run continuously, but this is usually not necessary. Once the material is set in motion, gravity will keep it moving.

#### **Concrete Consolidation Applications**

Adjust the airflow to achieve 10,000-14,000 vibrations per minute (same as rpm of vibrator). This can be done by referring to the performance data on page 13 of this manual and adjusting the regulator to the desired air pressure. Since the speed of the vibrator can vary depending on the rigidity of the mount and the forms, a more accurate way of assuring the desired frequency of vibration is to use a Vibra-Tachometer (available from your distributor pn #490010), to measure the actual operating frequency for your application. Use the air regulator to adjust the air pressure until the desired frequency is achieved.



#### **Break-in Period**

This vibrator is equipped with shielded roller bearings that are permanently lubricated at the factory with special grease for high-speed operation. Reduced speed and speed variations might occur during the first 30-60 minutes of operation until the grease is evenly distributed in the bearings.







#### V. Maintenance

The Turboviber® pneumatic turbine vibrators require very little maintenance. As long as the air supply is relatively clean (150 micron filtered recommended) and the air pressure is not excessive, the vibrators will give high performance for many hours of use. These vibrators are equipped with shielded roller bearings that are **permanently** lubricated at the factory. No lubrication is required. Reduced speed and speed variations might occur during the first 30-60 minutes of operation until the grease is evenly distributed in the bearings. Bearing life will depend on the speed at which the vibrator is run. It is important to keep in mind that a 10% increase in speed decreases the bearing life by 50%. Because these bearings are filled with a special lubricant designed especially for high speed applications, replacement bearings should be purchased from Global Manufacturing through your Global distributor or Viber® dealer.

#### **NOTE**

Inspect the shaft for wear. If wear is visible, it should be replaced.

#### NOTE

The bearings in Turboviber® vibrators contain a special lubricant for high-speed applications. Always use replacement bearings supplied by Global Manufacturing. They can be purchased through your Global distributor or Viber dealer. Bearings with standard lubrication may greatly reduce the performance of the vibrator and will greatly shorten the bearing life.

#### **Disassembly and Assembly**

#### **Kits Available:**

**TRK-63 TCL Bearing Replacement Kit #519063:** Includes one set of replacement bearings and two quide screws.

**TRK-61 TCL Rebuild Kit #519061:** Includes one set of replacement bearings, two guide screws, and one shaft.

#### **Tools Required:**

- Arbor press with minimum throat clearance of 7 inches
- 7/16" box end wrench
- 2" long 1" diameter steel rod
- Small gear or battery terminal puller
- Press bushing 1.3" O.D. X 1" I.D. X 2" long
- Press bushing or rod 2.25" in diameter X 2" long
- · Medium internal retaining ring pliers
- 2 ea. 1/4"-20 X 1 1/2" alignment bolts (provided in both kits)
- 1. Disconnect airline and remove unit from its mount.
- 2. Clean dirt and debris from the outside of the vibrator, do not immerse.
- 3. Lay the vibrator on its side with the four cover bolts facing downward.
- 4. Remove the bearing cap retaining ring.



5. Remove the bearing cap. It will be necessary to lightly scrape away any paint that would impede bearing cap removal.









6. Remove the o-ring that seals the bearing cover.



- 7. Lay the vibrator on the other side with the four cover bolts facing upward.
- 8. Remove the retaining ring, bearing cap, and o-ring from the side cover as in steps 4-6.







9. Remove the four cover bolts.



10. Block the vibrator up on the arbor press so the press can engage 1" X 2" rod when set on the now exposed shaft end. Be sure the cover will clear the support blocks underneath the vibrator.



11. Press the side cover and wheel assembly free of the housing with the 1" rod and the arbor press.



- 12. Lift the wheel assembly free of the pressed-out side cover.
- 13. Using a small gear or battery terminal puller, remove the inner bearing races from both ends of the wheel shaft. Note that the inner race is positioned with the race flange towards the wheel.



14. Place the inner races back in the bearings.





15. Using the 1.3" O.D. X 1" I.D. press bushing, press the bearing out of the side cover.



Repeat the process to remove the bearing from the housing bearing bore.

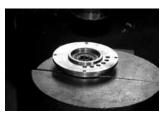








16. Clean the wheel assembly, housing, cover, and bearing bores thoroughly.


## **Important!**

Cleanliness is important to prevent any foreign particles from contaminating the new bearings.

17. Using 2" O.D. press rod, press a new prelubricated bearing into the bearing bore on the side cover. Be sure the lettering on the bearing outer race faces in towards the back of the bearing bore.







18. Repeat the process to install a new prelubricated bearing into the bearing bore on the housing. Again, make sure the lettering on the bearing outer race faces inward.





19. Using 1.3" O.D. X 1" I.D. press bushing, press the inner races onto the wheel shaft with their flanges facing inward toward the wheel.





20. Re-install O-rings, bearing caps, and retaining rings to secure the bearings in the side cover and housing.







21. Re-install the wheel into the housing. Note the proper orientation of the wheel. The arrow stamped on the wheel showing the direction of rotation should be visible and pointing in a counterclockwise direction.









The offset wheel buckets should be on the side closest to the back of the housing. Spin the wheel. It should turn freely.





22. Position the cover over the wheel shaft and orient the exhaust ports toward the handle. Install the two 1/4"- 20 X 1 1/2" bolts through the cover and into the threaded holes in the housing. These bolts hold cover alignment during the press-in operation.



23. Block-up the housing so that the side cover bearing cap boss is not bearing press force when reinstalling side cover into housing. Press the side cover into the vibrator housing until it seats completely in the housing.



24. Remove the two alignment bolts and re-install the four side cover bolts using Loctite® on the threads.





25. Apply air to the inlet port. The wheel should turn freely.



26. Remount and hook up air supply. Check operation. Note: new bearings will need to break in for 30-60 minutes to distribute the grease before the vibrator will reach full speed.

# Instructions for replacing the wheel shaft in the TCL vibrators:

#### **Tools required:**

Conventional oven or suitable source of heat and Mallet and drift of brass or hardwood

- 1. Disassemble vibrator and remove inner bearing races from the shaft ends. Note how shaft is positioned within the aluminum wheel.
- 2. Place shaft/wheel assembly in an oven and heat to 350-400°F. The wheel can also be heated with a torch. Concentrate the flame near the center of the aluminum wheel NOT on the steel shaft.
- 3. Once the wheel assembly has reached adequate temperature, the old shaft can be easily removed or tapped from the wheel. If the wheel is blocked up, the shaft can even fall out under the force of gravity.

#### Caution!

Wheel and shaft will be extremely hot. Wear proper hand protection.

4. Place the wheel back into the oven to reheat. This can also be done with a torch by carefully heating the wheel in the area around the center bore. Cool the new shaft in a freezer for easier fitting.









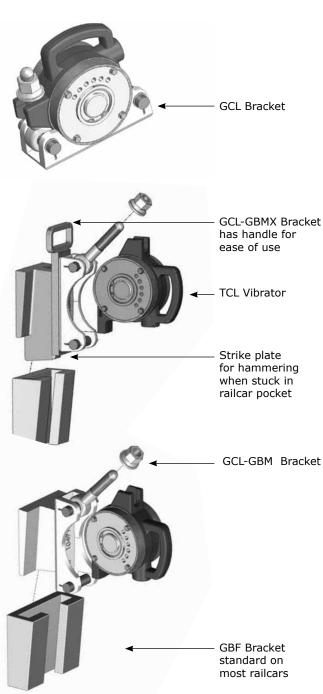
5. Remove the wheel from oven and place on its side on an elevated surface that will allow the shaft to extend through the opening in the center of the wheel.





6. Slide the cold shaft through the hot wheel until the shoulder of the shaft is flush with the wheel side.




**Position of the shaft is critical**. The shoulders of the shaft should not extend out beyond either side of the wheel.



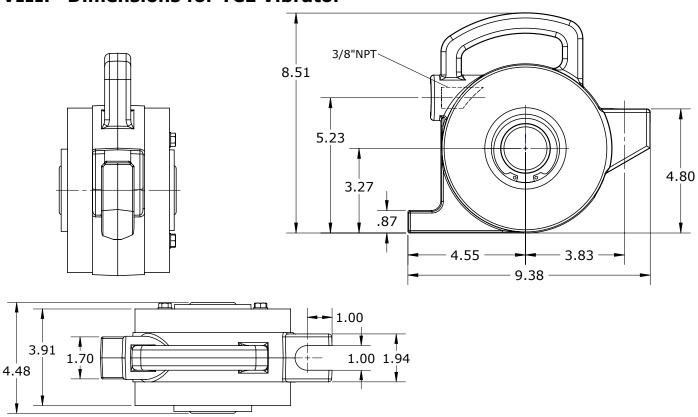
- 7. Allow assembly to cool. Check that the weights do not need re-staking to re-secure them (they may have come loose during the heating and cooling process).
- 8. Install new inner races on the shaft ends and replace in the vibrator as described in #21 above. Complete the re-assembly of the vibrator as detailed above.

#### VI. Brackets

Specialty mount brackets are available from Global Manufacturing for attaching the TCL vibrators in other settings. A GCL Bracket is typically welded to a form or hopper application. A GCL/GBM (pn #167020) bracket is a wedge adaptor bracket for use in the wedge pocket commonly found on railcar hoppers. The GCL/GBM-X Bracket (pn #167120) is also used in railcar applications. The GBM-X Bracket has an unitized construction, which helps it hold up to abuse. It also has a hammer strike plate to help when bracket gets stuck in railcar bracket. There is a handle for ease of portability. Contact your distributor for availability.





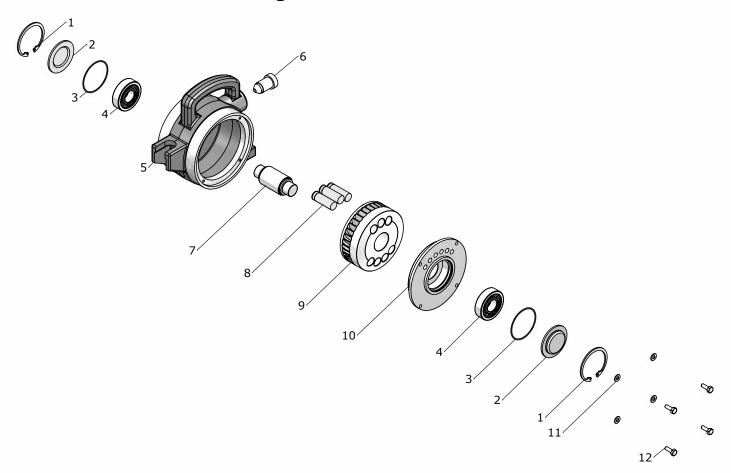





#### VII. TCL Turbine Vibrators Performance Data

|          | TCL Turbine Vibrators Performance Data |           |       |          |        |              |        |        |       |        |
|----------|----------------------------------------|-----------|-------|----------|--------|--------------|--------|--------|-------|--------|
|          |                                        | TCL-2500  |       | TCL-4000 |        | TCL-6000     |        |        |       |        |
| PRES     | SURE                                   | SPEED     | FLOW  | FORCE    | SPEED  | FLOW         | FORCE  | SPEED  | FLOW  | FORCE  |
|          |                                        | RPM       | CFM   | LB       | RPM    | CFM          | LB     | RPM    | CFM   | LB     |
| PSI      | BAR                                    |           | LPM   | N        |        | LPM          | N      |        | LPM   | N      |
| 20       | 1.38                                   | 10,500    | < 20  | 1,428    | 10 500 | < 20         | 2,297  | 10,500 | < 20  | 3,131  |
| 20       | 1.36                                   | 10,300    | < 566 | 6,351    | 10,300 | 10,500 < 566 | 10,217 |        | < 566 | 13,928 |
| 40       | 2.76                                   | 12,000    | 28    | 1,865    | 12,000 | 28           | 3,000  | 12,000 | 28    | 4,090  |
| 40       | 2.76                                   |           | 793   | 8,295    |        | 793          | 13,345 |        | 793   | 18,191 |
| 60       | 4.14                                   | 13,400    | 38    | 2,325    | 13,400 | 38           | 3,741  | 13,400 | 38    | 5,100  |
| 00       | 4.14                                   | 13,400    | 1,076 | 10,344   | 13,400 | 1,076        | 16,641 |        | 1,076 | 22,684 |
| 80       | 5.52                                   | 52 14,500 | 50    | 2,723    | 14,500 | 50           | 4,380  | 14,500 | 50    | 5,971  |
|          | 3.32                                   |           | 1,416 | 12,112   |        | 1,416        | 19,485 |        | 1,416 | 26,561 |
| LINBA    | LANCE                                  | lb-in     | 0.    | 456      |        | 0.734        |        | 1.000  |       |        |
| UNDA     | LANCL                                  | kg-mm     | 52    | 2.54     |        | 84.52        |        | 115.21 |       |        |
| STAF     | RT-UP                                  | psi       |       | 5        | 5      |              | 5      |        |       |        |
| PRESSURE |                                        | bar       | 0     | .34      | 0.34   |              |        | 0.34   |       |        |

#### **VIII.** Dimensions for TCL Vibrator










# IX. Parts List and Drawing - TCL - all models



|     | TCL Turbine Vibrators Parts List                                 |                                                            |                 |                 |                 |  |
|-----|------------------------------------------------------------------|------------------------------------------------------------|-----------------|-----------------|-----------------|--|
|     | TCL-2500 (pn 514025), TCL-4000 (pn 514040), TCL-6000 (pn 514060) |                                                            |                 |                 |                 |  |
| NO. | PART Number                                                      | PART DESCRIPTION                                           | TCL-2500<br>QTY | TCL-4000<br>QTY | TCL-6000<br>QTY |  |
| 1   | 347262                                                           | Retaining Ring 5000-262                                    | 2               | 2               | 2               |  |
| 2   | 119958                                                           | Bearing Cover                                              | 2               | 2               | 2               |  |
| 3   | 385037                                                           | O-Ring 568-037                                             | 2               | 2               | 2               |  |
| 4   | 383305                                                           | Bearing NJ305                                              | 2               | 2               | 2               |  |
| 5   | 149955                                                           | Housing                                                    | 1               | 1               | 1               |  |
| 6   | 490432                                                           | Nozzle                                                     | 1               | 1               | 1               |  |
| 7   | 209952                                                           | Shaft                                                      | 1               | 1               | 1               |  |
| 8   | 199854                                                           | Weight                                                     | 1               | 2               | 3               |  |
| 9   | 199955                                                           | Wheel (not sold separately)                                | 1               | 1               | 1               |  |
| 10  | 119956                                                           | Side Cover                                                 | 1               | 1               | 1               |  |
| 11  | 338203                                                           | Flat Washer 3/16"                                          | 4               | 4               | 4               |  |
| 12  | 330007                                                           | Hex Bolt 1/4"                                              | 4               | 4               | 4               |  |
| Kit | 1999559                                                          | Turbine Wheel Assembly - wheel, shaft, and desired weights |                 |                 |                 |  |
| Kit | 519061                                                           | Rebuild Kit - 2 bearings and shaft                         |                 |                 |                 |  |
| Kit | 519063                                                           | Bearing Replacement Kit - 2 bearings                       |                 |                 |                 |  |







# X. Troubleshooting

| Problem                                                          | Probable Cause                                                                                                          | Solution                                                                                                                                                                              |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                  | Restricted airline.                                                                                                     | Check for kinked or clogged airline.                                                                                                                                                  |  |  |
|                                                                  | Inadequate air supply.                                                                                                  | Check to make sure airline filter is equal to or larger than vibrator inlet port (3/8" NPT).                                                                                          |  |  |
|                                                                  | Contamination in vibrator, airline, exhaust ports, or air filter.                                                       | Disassemble and clean vibrator.<br>Blow out airline. Clean airline filter.                                                                                                            |  |  |
| Vibrator runs slowly  or  Vibrator does not operate.             | Bearings have excessive wear.                                                                                           | Replace bearings. Order TRK-63<br>Bearing Replacement Kit (pn #519063)<br>or TRK-61 - Rebuild Kit (pn #519061).                                                                       |  |  |
| <b>5p</b> 5 m 5 m                                                | Excess grease in bearings.                                                                                              | The bearings need to be properly greased (this is done at the factory). Excess grease will prevent the vibrator from reaching its full performance specifications.                    |  |  |
|                                                                  | Improper assembly after cleaning or changing bearings. Turbine wheel installed with buckets facing away from inlet jet. | Check the turbine wheel placement. The buckets in the wheel must face the air jet in the inlet port. Reverse wheel to correct.                                                        |  |  |
| Vibrator runs slowly<br>or<br>Vibrator speed is<br>not constant. | Break-in period for bearings.                                                                                           | The shielded roller bearings are permanently lubricated at the factory. It may require 30 - 60 minutes of operation for the grease to become evenly distributed through the bearings. |  |  |
|                                                                  | Mounting is not rigid.                                                                                                  | Check for loose bolts, broken welds, signs of separations or fatigue in structure.                                                                                                    |  |  |
| Vibrator makes excessive noise.                                  | Structure is empty.                                                                                                     | Turn off vibrator. Do NOT run when structure is empty.                                                                                                                                |  |  |
|                                                                  | Bearings have excessive wear.                                                                                           | Replace bearings. Order TRK-63<br>Bearing Replacement Kit (pn #519063)<br>or TRK-61 TCL Rebuild Kit (pn #519061).                                                                     |  |  |